Inteligencia Artificial 1.

La inteligencia artificial, es la inteligencia exhibida por máquinas.
En ciencias de la computación, una máquina »inteligente» ideal es un agente racional flexible que percibe su entorno y lleva a cabo acciones que maximicen sus posibilidades de éxito en algún objetivo o tarea. En la vida cotidiana, el término inteligencia artificial se aplica cuando una máquina imita las funciones «cognitivas» que los humanos asocian con otras mentes humanas, un claro ejemplo es: «aprender y resolver problemas.

Andreas Kaplan y Michael Haenlein definen la inteligencia artificial como «la capacidad de un sistema para interpretar correctamente datos externos, para aprender de dichos datos y emplear esos conocimientos para lograr tareas y metas concretas a través de la adaptación flexible».

Según Takeyas la Inteligencia Artificial es una rama de las ciencias computacionales encargada de estudiar modelos de cómputo capaces de realizar actividades propias de los seres humanos en base a dos de sus características primordiales: el razonamiento y la conducta.

A medida que las máquinas se vuelven cada vez más capaces, tecnología que alguna vez se pensó que requería de inteligencia se elimina de la definición. Por ejemplo, el reconocimiento óptico de caracteres ya no se percibe como un ejemplo de la »inteligencia artificial» habiéndose convertido en una tecnología común. Avances tecnológicos todavía clasificados como inteligencia artificial son los sistemas de conducción autónomos o los capaces de jugar al ajedrez o al Go.

Categorías de la inteligencia artificial.

Búsqueda heurística. Podemos definir una heurística como un truco o estrategia que limita grandiosamente la búsqueda de soluciones ante grandes espacios de problemas. Por lo tanto, ante un problema, nos ayuda a seleccionar las bifurcaciones dentro de un árbol con más posibilidades; con ello se restringe la búsqueda, aunque no siempre se garantiza una solución adecuada.

Representación del conocimiento. La representación es una cuestión clave a la hora de encontrar soluciones adecuadas a los problemas planteados. Si analizamos más detenidamente el término encontramos varias definiciones: según Barr y Feigenbaum, la representación del conocimiento es una combinación de estructuras de datos y procedimientos de interpretación que, si son utilizados correctamente por un programa, éste podrá exhibir una conducta inteligente; según Fariñas y Verdejo, la Inteligencia Artificial tiene como objetivo construir modelos computacionales que al ejecutarse resuelvan tareas con resultados similares a los obtenidos por una persona, por lo que el tema central de esta disciplina es el estudio del conocimiento y su manejo; y según Buchanan y Shortliffe, la Representación del Conocimiento en un programa de Inteligencia Artificial significa elegir una serie de convenciones para describir objetos, relaciones, y procesos en el mundo. Gran parte del esfuerzo realizado en la consecución de ordenadores inteligentes, según Rahael, ha sido caracterizado por el intento continuo de conseguir más y mejores estructuras de representación del conocimiento, junto con técnicas adecuadas para su manipulación, que permitiesen la resolución inteligente de algunos de los problemas ya planteados.

Lenguajes, entornos y herramientas de Inteligencia Artificial. En la Inteligencia Artificial, se han desarrollado diferentes lenguajes específicos para los diferentes campos de aplicación. Estos lenguajes en su mayoría cuentan con una serie de características comunes que podemos resumir de la siguiente forma: Este tipo de software ofrece una gran modularidad. Poseen gran capacidad de tomar decisiones de programación hasta el último momento, es decir cuando el programa ya está ejecutándose. Ofrecen grandes facilidades en el manejo de listas, y esto es importante, ya que las listas son la estructura más habitual usada para la representación del conocimiento en la Inteligencia Artificial. Facilitan la realización de ciertos tipos de deducción automática permitiendo también la creación de una base de hechos (lugar donde se recogen los datos iniciales del problema a resolver y los resultados intermedios una vez obtenidos).


Stuart Russell y Peter Norvig diferencian estos tipos de la inteligencia artificial:8

  • Sistemas que piensan como humanos.- Estos sistemas tratan de emular el pensamiento humano; por ejemplo las redes neuronales artificiales. La automatización de actividades que vinculamos con procesos de pensamiento humano, actividades como la toma de decisionesresolución de problemas y aprendizaje.
  • Sistemas que actúan como humanos.- Estos sistemas tratan de actuar como humanos; es decir, imitan el comportamiento humano; por ejemplo la robótica. El estudio de cómo lograr que los computadores realicen tareas que, por el momento, los humanos hacen mejor.
  • Sistemas que piensan racionalmente.- Es decir, con lógica (idealmente), tratan de imitar o emular el pensamiento lógico racional del ser humano; por ejemplo los sistemas expertos. El estudio de los cálculos que hacen posible percibirrazonar y actuar.1
  • Sistemas que actúan racionalmente (idealmente).– Tratan de emular de forma racional el comportamiento humano; por ejemplo los agentes inteligentes. Está relacionado con conductas inteligentes en artefactos.

Escuelas de pensamiento

La Inteligencia Artificial se divide en dos escuelas de pensamiento:

Inteligencia artificial convencional

Se conoce también como IA simbólico-deductiva. Está basada en el análisis formal y estadístico del comportamiento humano ante diferentes problemas:

  • Razonamiento basado en casos: Ayuda a tomar decisiones mientras se resuelven ciertos problemas concretos y, aparte de que son muy importantes, requieren de un buen funcionamiento.
  • Sistemas expertos: Infieren una solución a través del conocimiento previo del contexto en que se aplica y ocupa de ciertas reglas o relaciones.
  • Redes bayesianas: Propone soluciones mediante inferencia probabilística.
  • Inteligencia artificial basada en comportamientos: Esta inteligencia contiene autonomía y puede auto-regularse y controlarse para mejorar.
  • Smart process management: Facilita la toma de decisiones complejas, proponiendo una solución a un determinado problema al igual que lo haría un especialista en dicha actividad.

Inteligencia artificial computacional

La Inteligencia Computacional (también conocida como IA subsimbólica-inductiva) implica desarrollo o aprendizaje interactivo (por ejemplo, modificaciones interactivas de los parámetros en sistemas de conexiones). El aprendizaje se realiza basándose en datos empíricos.

Vea también el vídeo en YouTube: https://youtu.be/hIfOuarYxfA

Deja un comentario